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ABSTRACT: Rheological characterization of a model suspension containing hydroxyl-
terminated polybutadiene and glass beads with filler concentration up to 30% by
volume was performed by using a Haake parallel disk rheometer. The rheological tests
conducted were the measurement of the storage modulus, G9, loss modulus, G0, and
complex viscosity, h*, as functions of the frequency and the steady shear viscosity as a
function of the shear rate. The linear viscoelastic region was determined to extend up
to 50% strain by measuring G9, G0, and h* as functions of strain amplitude. By using
multiple gap separations between the disks, it was found that the suspension did not
exhibit slip at the walls of the rheometer. G9 and G0 were used to determine the
relaxation times distribution, Gi(li, B) as functions of the relaxation time, li, and the
filler content, B. The relaxation moduli, Gi(li, B), decreased with the relaxation time,
but increased with the filler content. The Cox–Merz rule was also observed to be valid
for these suspensions. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 70: 507–514, 1998
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INTRODUCTION

Rheological properties of suspensions are of inter-
est in polymer, food, detergent, ceramic, and solid
rocket fuel industries. These properties depend on
the solid content, particle shape, size and size
distribution, viscosity of the matrix, and also
measurement conditions such as temperature
and shear rate. Several reviews exist on the rheo-
logical properties of suspensions.1–4 Character-
ization of the rheological behavior of concentrated
suspensions may also be complicated by slip at
the walls of the rheometer.5,6

Viscoelastic properties of suspensions with high
filler content were investigated by Bigg,7,8 Schre-
uder and colleagues,9 Poslinski and colleagues,10

Strivens,11 Doraiswamy and colleagues,12 and
Kalyon and colleagues.13 In other studies of vis-
coelastic properties of suspensions by Lakdawala
and Salovey,14 Matsumoto and colleagues,15 Rong
and Chaffey,16 and Lobe and White,17 the particle
sizes were considerably smaller than the one in this
study. In suspensions with high filler content or
small particle size, the particle interactions are
strong and either there exists a yield stress such
as in the studies of Lobe and White,17 Bigg,7,8

Lakdawala and Salovey,14 Doraiswamy and col-
leagues,12 and Poslinski and colleagues,10 or the
viscoelastic properties are strain-dependent and
nonlinear.7–10,13,15,18

The applicability of the Cox–Merz rule19 was
investigated in some of these systems. Kitano and
colleagues,18 Doraiswamy and colleagues,12 Ma-
tsumoto and colleagues,15 and Bigg7,8 have found
that, in these suspensions, the Cox–Merz rule
was not applicable. Doraiswamy and coworkers12
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proposed a modified Cox–Merz rule for highly
concentrated suspensions.

In this study, the linear viscoelastic properties
of a moderately concentrated (up to 30% by vol-
ume) weakly interacting system containing glass
beads were investigated. The emphasis of the in-
vestigation was linear versus nonlinear viscoelas-
tic behavior, strain amplitude dependency of vis-
coelastic properties, slip at the wall, and applica-
bility of the Cox–Merz rule. Also, the relaxation
spectra of the suspensions were calculated by us-
ing experimental oscillatory shear data using the
linear regression method.20 For the first time, the
steady shear viscosity of such suspensions were
predicted by using the relaxation spectra.

EXPERIMENTAL

Materials and Sample Preparation

The polymer matrix used in this study is hydrox-
yl-terminated polybutadiene, which is manufac-
tured by Atlantic Richfield. This polymer is a
Newtonian fluid with a density of 0.85 g z mL21

and a number average molecular weight of 2500
g z gmol21. Its viscosity was determined experi-
mentally as 7.7 Pa z s at 23°C.

Spherical glass beads by Sivalco were used as
fillers. The fillers have a volume average particle
diameter of 45.94 mm and a density of 2.53 g z mL21.
Size distribution of the glass beads is given in Table
I. Suspensions were prepared with 10, 20, and 30%
filler contents by volume.

Samples were prepared by mixing the polymer
matrix with the glass beads for a period of 30 min
in a beaker. The samples were then placed in a
60-mL injector and connected to a vacuum pump
(AEI Ltd.) for 10 min to remove the air bubbles

trapped in the sample. The tip of the injector was
4 mm in diameter. To prevent settling of parti-
cles, the injector was continuously rotated until
the start of the experiment, and the samples were
placed on the parallel disk with the injector for
rheological characterization.

Rheological Characterization

Rheological properties of the suspensions were
measured by using a HAAKE (model CV20) par-
allel disk rheometer at 23°C. Samples were pre-
pared just before the experiments. A new sample
was used in each experiment. Oscillatory shear
and steady shear experiments were conducted on
samples with 0, 10, 20, and 30% glass beads. The
oscillatory shear experiments involved steps that
were needed to determine the linear viscoelastic
region and to validate the “no slip at the wall”
assumption.

In determining the linear viscoelastic region,
the frequency was kept constant at 1 rad z s21,
and the strain amplitude was varied between 5
and 50%. A constant gap height of 1 mm was used
and the storage modulus, G9, the loss modulus,
G0, and the complex viscosity, h*, were measured
as functions of the strain amplitude.

After determining the linear viscoelastic region,
experiments were performed by using different gap
heights of 1.0, 1.5, and 2.0 mm and keeping the
strain amplitude constant at 10%. The storage and
loss moduli, and the complex viscosity were mea-
sured as functions of the frequency in the range of
0.63 to 29.1 rad z s21. In the steady shear experi-
ments, gap heights of 1.0, 1.5, and 2.0 mm were
used to check the “no slip at the wall” assumption.
The steady shear viscosity was measured in the
shear rate range of 0.177–2.578 s21. The duration of
the experiments were chosen long enough so that
the values of the viscosities measured were the
steady-state ones.

RESULTS AND DISCUSSION

Oscillatory Shear Experiments

Figures 1–3 show the results of the experiments
involving the determination of the linear vis-
coelastic range. As seen from these figures, the
oscillatory shear properties G9, G0, and h* are not
strongly dependent on the strain amplitude, g0, in
the range of 5–50% strain. This is in contrast to
the behavior of highly concentrated systems (e.g.,
Doraiswamy and coworkers12 found that G9, G0,

Table I Volumetric Size Distribution of
Particles Used in This Study

Size (mm)
% Cumulative Volume

of Particles

18.21 0
22.04 0.01
26.68 3.15
32.29 12.13
39.08 29.23
47.30 57.06
57.25 84.06
69.30 96.78
83.67 99.63

101.52 100
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and h* were inversely proportional to g0). It may
be concluded that the samples used in our study
are linear viscoelastic up to 50% strain. The re-
producibility of the data was affected by sample
uniformity and torque value. The torque values
measured for small strain amplitudes were at the

lower end capability of the torque measuring de-
vice, therefore small deviations from the constant
values existed at small strain amplitudes. The
oscillatory experiments showed better reproduc-
ibility at high strain amplitudes and high fre-
quencies, due to higher torques involved. How-
ever, samples may exhibit fracture at high strain
amplitudes, thus an intermediate strain ampli-
tude of 10% was chosen for the experiments that
followed.

Figures 4–6 show some of the results of the
experiments on samples with 30% glass beads
that were done to validate the “no slip at the wall”
assumption. Similar experiments were conducted
for the samples containing 0, 10, 20, and 30%
glass beads. The results for all concentrations
were similar [i.e., the properties measured (G9,
G0, and h*) were independent of the gap height in
the range of gap heights studied]. This proves
that the samples did not exhibit slip at the wall
under the conditions studied. Yilmazer and
Kalyon5 observed that the rheological properties
of a highly concentrated (60% by volume) suspen-
sion did depend on the gap height, indicating that
slip at the walls of the parallel disk rheometer
occurred. Lack of slip at the wall in our experi-
ments is thought to occur due to the low filler
contents studied. At low and moderate filler con-
tents, the particles may move over each other
during flow so that a velocity gradient may exist

Figure 1 Effect of shear strain amplitude on storage
modulus for suspensions with 0, 10, 20, and 30% glass
beads at the gap height of 1 mm.

Figure 2 Effect of shear strain amplitude on loss
modulus for suspensions with 0, 10, 20, and 30% glass
beads at the gap height of 1 mm.

Figure 3 Effect of shear strain amplitude on complex
viscosity for suspensions with 0, 10, 20, and 30% glass
beads at the gap height of 1 mm.
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in the sample. However, at high filler contents, if
the fillers cannot move over each other, the sam-
ple may slip at the wall showing very little or no
deformation inside.6

The viscoelastic properties G9, G0, and h* are
shown as functions of the frequency in Figures
7–9 for all of the filler contents studied. The stor-

age and loss moduli increase with the frequency.
However, the complex viscosity remains constant
with increasing frequency, indicating that the
suspensions are Newtonian in this frequency
range.

Figure 4 Effect of gap height on storage modulus as
a function of frequency at gap heights of 1, 1.5, and 2
mm.

Figure 5 Effect of gap height on loss modulus as a
function of frequency at gap heights of 1, 1.5, and 2 mm.

Figure 6 Effect of gap height on complex viscosity as
a function of frequency at gap heights of 1, 1.5, and 2
mm.

Figure 7 Storage modulus as a function of frequency
for suspensions with 0, 10, 20, and 30% glass beads at
the gap height of 1 mm.
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Steady Shear Experiments

In the steady shear experiments, a constant shear
rate was applied and the torque was measured as
a function of time. The viscosity, h, was calculated
from

h 5
~T/2pR3!

ġ F3 1
d ln~T/2pR3!

d lnġ G (1)

where T is the torque, R is the radius of disks,
and ġ is the shear rate at the edge of the disk.21

The results shown in Figure 10 indicate that the
suspensions are Newtonian, thus eq. (1) reduces
to

h 5
2T

ġpR3 (2)

The concentration dependence of the steady
shear viscosity of suspension has been the subject
of several studies. Kamal and Mutel,1 Metzner,2

and Khan and Prud’homme3 summarized some of
the literature available on this subject.

The relative viscosity, hr, is defined as

hr 5
h

h0
(3)

where h0 is the viscosity of the matrix material
measured at the same shear rate. The relative
viscosity is assumed to be independent of the
shear rate and is studied as a function of the filler
content in several theories formulated. Figure 11
shows hr as a function of the filler content at
various shear rates. At each filler content, an

Figure 8 Loss modulus as a function of frequency for
suspensions with 0, 10, 20, and 30% glass beads at the
gap height of 1 mm.

Figure 9 Complex viscosity as a function of fre-
quency for suspensions with 0, 10, 20, and 30% glass
beads at the gap height of 1 mm.

Figure 10 Steady-state shear viscosity as a function
of shear rate for suspensions with 0, 10, 20, and 30%
glass beads at the gap height of 1 mm.
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average value of hr is calculated for all the shear
rates studied. Thus, it is assumed that

hr 5 f~B! (4)

where f(B) is the average indicated in Figure 11
and is used in the analysis that follows.

Figures 7–9 show that G9, G0, and h* can be
shifted vertically. The deviations due to experi-
mental errors are somewhat large for G9 at very
small frequencies due to small torque values.
Thus, it is proposed to express G9, G0, and h* as

G9 5 G90 f~B! (5)

G0 5 G 00 f~B! (6)

h* 5 h*0 f~B! (7)

where G90, G 00, and h*0 are the storage modulus,
the loss modulus, and the complex viscosity of the
polymer matrix. Figure 12 shows G9/f(B) and
G0/f(B) calculated using the experimental values
in Figures 7 and 8 and the f(B) given in Figure
11. Similar results were found for h*/f(B), but
they are not included in Figure 12 for clarity. The
results are satisfactory, indicating that, for these
systems, the interactions between the particles
are small and G9, G0, and h* can be written as
independent functions of the frequency and the
filler content. Similarly, h can be formulated as
an independent function of the filler content and
the matrix viscosity as implied in eqs. (3) and (4)
and shown in Figure 11.

Relaxation Times Distribution

Boltzmann Superposition Principle describing
linear viscoelastic behavior can be given as

t~t! 5 E
2 `

t

G~t 2 t9!ġ~t9! dt9 (8)

where t is the shear stress, G(t) is the linear
relaxation modulus, and ġ is the shear rate.

The most popular approach to describe the be-
havior of polymer solutions, and melts in linear
viscoelastic experiments is the generalized Max-
well model. The function used in this model is

G~t 2 t9! 5 O
i 5 1

N

Gi exp@ 2 ~t 2 t9!/li# (9)

where Gi is the relaxation modulus and li the
relaxation time. They are determined as N pairs
from discrete experimental data.

From oscillatory shear experiments, the model
parameters (Gi, li) can be determined by using
the following equations22:

G9~wj! 5 O
i 5 1

N

Gi

~wjli!
2

1 1 ~wjli!
2 (10)

G0~wj! 5 O
i 5 1

N

Gi

~wjli!

1 1 ~wjli!
2 (11)

Here, wj refers to the experimental frequency.

Figure 12 Shifted values of storage and loss moduli
as a function of frequency for different filler contents.

Figure 11 Relative viscosity as a function of volume
fraction of glass beads at various shear rates. Curve
represents the average values of all the shear rates.
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In this study, the linear least-squares meth-
od20 was used to obtain the relaxation time and
the relaxation modulus. N sets of model parame-
ters (Gi, li) were determined by using the exper-
imental sets of data [G9(wj), G0(wj)] with eqs.
(10) and (11) given previously.

Logarithmically distributed N values of li
were chosen within the range of experimental
frequencies. The values of li were taken as 1/wj
within the experimental frequency range. The
least-squares principle was applied to determine
the values of Gi.

20 The following sum in eq. (12)
was calculated:

O
j 5 1

M FS O
i 5 1

N 1
G9~wj!

Gi

~wjli!
2

1 1 ~wjli!
2 2 1D 2

1 S O
i 5 1

N 1
G0~wj!

Gi

wjli

1 1 ~wjli!
2 2 1D 2G 5 S (12)

The sum of the squares of the errors, S, can be
minimized by differentiating S with respect to
each Gi. The equations obtained from the differ-
entiation can be solved numerically23 by using
singular value decomposition, which is available
as a software package program.

Relaxation times and moduli determined from
oscillatory shear data are shown in Figure 13 for
the filler contents studied. The relaxation modu-
lus increases with decreasing relaxation time and
increasing filler content.

Equations (5) through (7) and the Maxwell
model imply that the relaxation moduli, Gi(li,
B), can be represented as separable functions of
the filler content, B, and the relaxation time, li

Gi~li, B! 5 Gi,0~li! f~B! (13)

In equation (13), Gi,0(li) is the relaxation mod-
ulus of the matrix as a function of li. The values
of Gi(li, B) obtained from Gi,0(li) and f(B) are
also shown in Figure 13 as the lines. The satis-
factory agreement indicates that, for this nonin-
teracting system, the relaxation moduli are mod-
ified by f(B) as indicated in eq. (13).

Finally, the Cox–Merz rule is tested for these
suspensions. The Cox–Merz rule states that

h 5 h* at ġ 5 w (14)

Experimental data are shown in Figure 14 at ġ
3 0 and w 3 0, indicating the applicability of
the Cox–Merz rule for these suspensions with
noninteracting particles.

The analysis pertaining the Boltzmann super-
position principle can be cross-checked as follows.
The steady shear viscosities h(ġ 3 0) can be cal-
culated from

h~ġ3 0! 5 OliGi (15)

The values of h(ġ3 0) calculated from eq. (15)
are also shown in Figure 14 supporting the anal-
ysis.

CONCLUSIONS

Rheological properties of suspensions of glass
beads in a Newtonian fluid (hydroxyl-terminated
polybutadiene) were characterized by oscillatory
and steady shear experiments. The linear vis-

Figure 13 Relaxation modulus and relaxation time
as functions of volume fraction of glass beads. Lines
represent theoretical values calculated from eq. (13).

Figure 14 Viscosities for very low values of frequency
and very low values of shear rate and the values cal-
culated from eq. (15) as functions of the filler content.

VISCOELASTIC PROPERTIES OF SUSPENSIONS 513



coelastic range in oscillatory shear experiment
was determined. The samples showed linear vis-
coelastic behavior up to a strain amplitude of
50%. Then, a strain amplitude of 10% was chosen
for the rest of the oscillatory shear experiments.
The occurrence of slip at the wall was checked by
using multiple gap separations between the
disks. It was found that the samples did not show
any slip at the wall. For all of the suspensions, it
was observed that the storage modulus, loss mod-
ulus, and complex viscosity were increasing with
increasing filler content. Relaxation spectra [i.e.,
Gi(li, B)] were calculated by using oscillatory
shear data. Gi(li, B) decreased with li, but in-
creased with the filler content. The functions G9,
G0, and h* can be expressed as separable func-
tions of the filler content and the frequency. Sim-
ilarly, the relaxation moduli, Gi(li, B), were for-
mulated as separable functions of the filler con-
tent and the relaxation modulus of the matrix
material. The previously mentioned function of
the filler content is the same as the relative vis-
cosity function referred to in the literature.
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